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Miro Overview
About Miro. Miro is a mobile platform that provides 
in-depth assessment tools to measure a wide range of 
brain functions including motor, speech, language, 
attention, cognition, emotion and social function. Rich 
data types, including audio, video, motion and touch 
screen data, show a marked improvement in the 
characterization of brain function over pencil-paper 
tests and mouse clicks. Miro measurement paradigms 
were developed in collaboration with leading 
researchers in respective functional areas. Data-driven 
analyses further Miro’s improvement in the 
characterization of brain function over human-driven 
analyses. Miro developed its usability and Artificial 
Intelligence based on the collection of data from more 
than 700 users.

How Miro works. Miro assessments run on iPads. 
Results are wirelessly transmitted to secure servers. 
Performance data is processed and analyzed by 
machines and reviewed by human experts. Features, 
variables and aggregates are flexibly combined and 
analyzed to discover patterns that may better 
characterize individual performance, discover 
phenotypes and disease sub-types, and evaluate 
therapeutic interventions over time. Clinicians and 
researchers access Miro scores via a web interface with 
downloadable .csv files. Miro aims to support 
improvements in clinical care and research by 
advancing functional brain assessment in six key areas:
1. Collection of broader data types (e.g., behavior, 
speech and motor function)
2. Direct recordings of patient performance that are not 
intermediated by a human clinician
3. Increased range, resolution and precision of captured 
data
4. Longitudinal performance monitoring (reliable, 
repeatable, self-administrable assessments)
5. Data-driven analysis (and the continual discovery of 
informative variables and aggregates)
6. Improved usability for clinicians, researchers and 
patients

Study Overview
Data is presented on the feasibility and effectiveness of 
Miro, a neurological health platform and mobile 
neurological assessment and monitoring app, to support 
the accurate characterization of a wide range of brain 
functions. The quantification of brain function can be 
used for the diagnosis, monitoring and management of 
brain conditions. The detection of subtle functional 
change is important for the discovery and monitoring of 
brain disorders as well as the monitoring of the efficacy 

of therapeutic intervention. Miro’s ability to to 
characterize subtle changes is measured by an “MCI 
Risk Score”. The sensitivity and specificity of Miro’s 
MCI Risk Score is measured in 38 subjects with Mild 
Cognitive Impairment (MCI) and 32 Normal Control 
subjects. The reliable, repeat assessment of 
neurological function is a cornerstone for diagnosis 
and monitoring. The reliability of Miro’s patent-pending 
Infinite Versioning(TM) that supports longitudinal 
assessment was tested. Test-retest reliability was 
evaluated over three time points in 23 healthy 
volunteers. Miro’s correlation to existing clinical 
practice is also tested. Concurrent validity, as 
quantified by correlation of Miro scores to traditional 
clinician-administered, pencil-paper neuropsychological 
test scores, was evaluated in 19 healthy volunteers and 
33 disordered subjects. The accurate differentiation of 
functional impairment by domain is critical for 
precision diagnostics and intervention. An exploratory 
analysis of Miro’s potential to differentiate disorders 
with significant overlapping symptoms in patient 
populations with memory impairment, speech and 
language impairment, executive function impairment, 
and motor impairment is examined.

Human Subjects: This study received Investigational 
Device Exemption (IDE) approval from
Johns Hopkins University Hospital Institutional Review 
Board (IRB) and from New England
IRB. 

Introduction
The assessment and monitoring of brain health is an 
increasingly critical component of overall health. The 
proper characterization and management of disorders 
can lead to more accurate diagnosis, more appropriate 
treatment options, and improved prognosis. Despite the 
importanceof accurate brain measures, and the growth 
of computer-based testing, reliable clinical options
are limited. The most advanced assessments lack the 
ability to accurately distinguish disorders with 
overlapping symptoms or to characterize sub-types of 
disorders, contributing to high misdiagnosis rates, 
mis-medication and increased healthcare costs. The 
most common approach to the measurement and 
monitoring of brain function, the pencil-paper brief 
screen, and recent computer-based brief-screens, 
present significant clinical challenges:

(1)First, they lack the resolution and range to detect 
subtle, but debilitating, functional changes and thus 
cannot be used to detect or monitor mild to moderate 
conditions nor track therapeutic efficacy.



(2)Second, their data capture is limited only to 
cognitive function. They neglect emotional, social, 
motor, speech and language functions.
(3)Third, they lack repeatability and thus are unable to 
track brain health over time.
(4)Fourth, they lack reliability: administration and 
scoring vary either by clinician or computer system. 
Systems with differences in either hardware or software 
introduce inconsistencies in measurements.
(5)Fifth, they are not self-administrable nor scalable; 
they require in-office, one-on-one clinician-patient 
assessments and are logistically and financially 
cost-prohibitive.
(6)Sixth, humans pre-determine performance scores; the 
lack of machine-driven exploration of the data prevents 
the evolution of insights as the data set grows.

There is growing consensus among clinicians and 
researchers of the need for precise, relevant
and accessible tools that can better characterize brain 
function. It is well understood that patients with brain 
disorders would benefit from efficient, ongoing, 
in-depth functional brain assessments, just as 
cardiovascular patients benefit from regular blood 
pressure and heart rate monitoring. Miro is developing 
accessible, reliable, efficient and cost-effective methods 
to accurately characterize brain function. Miro is 
innovative in a variety of ways: 
• Miro assessment combines novel audio, video, 
gyrometer and touchscreen data capture and analysis 
with interactive analogues of neurological, psychiatric 
and neuropsychological exams.
• Miro's data processing pipeline and machine-learning 
engine support continuous discovery and improvement.
• Miro scores are stored with raw audio, video and 
touchscreen recordings for future reference.
• Miro is modular and can be tailored to meet the needs 
of each clinician and researcher. 
• Infinite Versioning (TM) (patent-pending) allows Miro 
modules to be administered over time with little 
discernible learning effects.
• Miro is self-administrable and available on-demand, 
permitting in- or out-of-office assessment.

MIRO MODULES
Attention and response inhibition
Measures: Sustained attention, simple reaction time and 
response inhibition
Time: variable (~120 seconds)
Description: (A) Scary ghosts appear on the screen. The 
user must tap the ghosts as quickly as possible. (B) 
Scary and kind ghosts appear on the screen. The user 
must tap the scary ghosts as quickly as possible and 
avoid tapping the kind ghosts. 

Category fluency
Measures: Word generation, flexibility and working 
memory (rule monitoring).
Time: 90 seconds
Description: A category (e.g., fruits) appears on the 
screen. Users must say as many words as possible that 
belong to that category.

Choice reaction time
Measures: Psycho-motor speed
Time: ~60 seconds (variable)
Description: Two images appear on the screen and the 
user must decide whether they are the same or different.

Coding
Measures: Processing speed, fine motor function, 
implicit memory
Time: 90 seconds
Description: The user deciphers as many codes as 
possible in 90 seconds by matching number/symbol 
pairs

Design fluency
Measures: Visual generativity, flexibility and working 
memory (rule monitoring)
Time: 90 seconds
Description: 5 locations appear on a map. Users are 
instructed to make as many unique paths as possible 
that connect the locations.

Digit span forward and backward
Measures: Basic auditory attention, auditory memory 
span and working memory
Time: variable (~120 seconds)
Description: (A) The user is instructed to listen to the 
number sequences and then to repeat them back loudly 
and clearly; (B) The user is instructed to listen to the 
number 
sequences and then to repeat them in reverse order 
loudly and clearly.

Divided attention
Measures: Attention, divided attention
Time: variable (~120 seconds)
Description: An object is hidden under one of three 
cups. As the cups move, the user must track the hidden 
object. When the cups stop moving, the user is 
instructed to tap the cup hiding the object. 

Face-name learning and memory
Measures: Face-name learning and memory
Time: variable
Description: People appear on the screen and are 
introduced to the user. The user listens to their names 
and recalls them when prompted with pictures. If 
correct, the user advances to the next level that includes 
the faces and names on that level and previous levels. 
The module ends when the user fails to recall at least 
80% of words over three repeated trials. Delayed free 
recall follows a 20 minute delay. The user is prompted 
to identify as many faces as possible.

Fine motor speed: finger tapping
Measures: Fine motor speed and consistency
Time: ~120 seconds
Description: Hands are anchored to the iPad in specified 
locations. The user is instructed use their index finger to 
tap as fast as possible. User performs 3 trials per hand, 
switching back and forth between hands.



Free speech: Picture description
Measures: Speech, language and grammar, voice, 
emotion
Time: 120 seconds (max)
Description: Subject sees an animation and is asked to 
describe the scene out loud in as much detail as possible 
and in full sentences.

Immediate recall (visual)
Measures: Immediate image memory
Time: Variable (~120 seconds)
Description: images are presented to the user. If the user 
has seen the image before, the user clicks on the image. 
If the user has not seen the image before, the user 
doesn’t click on the image. (Display speed can be 
adjusted for people with motor disorders).

Irregular word reading
Measures: Ability to properly read and pronounce 
non-phonetic words
Time: ~120 seconds
Description: Ten irregular words and ten regular words 
are displayed on the screen. The user pronounces each 
word out loud. 

Naming
Measures: Confrontation naming
Time: variable (~60 seconds; max = 225 seconds)
Description: Three objects are displayed on the screen. 
The user is given up to 15 seconds to name each item.

Repetition
Measures: articulation
Time: variable (~90 seconds; up to 4 minutes for low 
performers)
Description: Words and phrases are presented one by 
one in a call and response style. Each of 3 words is said 
aloud five times and each of three phrases is said once. 
Users are asked to say and repeat aloud each word and 
phrase exactly as it is presented.

Response inhibition
Measures: Response inhibition (go/no-go)
Time: ~180 seconds
Description: Objects appear on the screen, half require 
that the user tap them, half require that the user refrain 
from tapping them. 

Saccades and anti-saccades
Measures: Reaction time, inhibition, eye movement
Time: variable (~120 seconds)
Description: The user sees a stimulus in the center of 
the screen. A light then appears to either side of the 
screen. (A) The user is instructed to look at the light and 
the stimulus that appears on the side of the screen and 
to verbally acknowledge whether the stimulus is the 
‘same’ or ‘different’ from the stimulus presented in the 
middle of the screen. (B) The user is instructed to
look away from the light that appears on the side of the 
screen (a stimulus has appeared on the opposite side of 
the screen from the light) and to verbally acknowledge 
whether the stimulus on the opposite side of the screen 
from the light is the ‘same’ or ‘different’ from the 

stimulus presented in the middle of the screen.

Set shifting
Measures: Mental flexibility, sustained attention, 
processing speed
Time: 120 secs (max)
Description: The numbers 1-16 and the letters A-P are 
arranged in a designated order on the screen. The user 
must switch back and forth between numbers and letters 
in ascending order as fast as possible. The module ends 
at completion or 7 consecutive mistakes.

Simple reaction time
Measures: Simple reaction time
Time: ~45 seconds
Description: Objects appear on the screen. The user 
must tap each object as it appears.

Spatial learning and memory
Measures: Spatial learning and memory
Time: variable (up to 10 minutes for high performers)
Description: The user is introduced to a town map. The 
user must remember groups of objects, people and 
places that appear on the map in increasing numbers. If 
correct, the user advances to the next level that includes 
the original group plus new additions. The module ends 
when the user fails to recall at least 80% of the elements 
over three repeated trials. Delayed free recall follows a 
20 minute delay. The user is prompted to locate as many 
items as they can.

Spatial location and immediate visual memory
Measures: Immediate visual memory, spatial location 
accuracy
Time: variable (<90 seconds)
Description: A three-letter nonsense word flashes on the 
screen and then disappears, followed by an object or a 
group of objects, placed at controlled-random locations. 
The user is instructed to touch the screen exactly where 
the objects appeared and is then asked to identify the 
threeletter nonsense word.

Spatial span forward and backward
Measures: Basic visual attention, spatial memory span 
and working memory
Time: variable (~120 seconds)
Description: (A) The user is instructed to watch the 
spatial sequences and then to repeat them on the 
touchscreen; (B) The user is instructed to watch the 
spatial sequences and then to repeat them in reverse 
order on the touchscreen.

Verbal fluency
Measures: Verbal generation, flexibility and working 
memory (rule monitoring).
Time: 90 seconds
Description: A letter appears on the screen. Users must 
say as many words as possible that begin
with that letter.



Verbal list learning and memory
Measures: Verbal learning and memory
Time: Variable depending on ability (up to 10 minutes 
for high performers)
Description: The user must remember a passphrase of 
increasing length. The user listens to the passphrase and 
repeats it back. If correct, the user advances to the next 
level that includes the original set of words plus new 
additions to the list. The module ends when the user 
fails to recall at least 80% of words over three repeated 
trials. Delayed free recall follows a 20 minute delay. 
The user is prompted to repeat as many items as they 
can, in any order.

Visual search
Measures: Visual search
Time: 90 seconds (max)
Description: The numbers 1-16 are arranged in a 
designated order on the screen. The user must tap the 
numbers in ascending order as fast as possible. The 
module ends at completion or 7 consecutive mistakes.

Working memory
Measures: Working memory
Time: variable (~60 seconds)
Description: Objects, such as coins, enter the screen one by 
one and disappear. The user must track the number of each 
type of object the enters the screen and enter it at the end of 
each level.

Study Description

THE DISCRIMINATION BETWEEN SUBJECTS WITH 
MILD COGNITIVE IMPAIRMENT
AND NORMAL CONTROL

Seventy subjects, comprised of 32 cognitively normal 
volunteers, and 38 subjects with mild cognitive impairment 
(MCI) were included in an analysis of the ability of the Miro 
platform to distinguish subjects with MCI from normal 
subjects.

Table 1. Demographics

The subjects with MCI were a heterogeneous group 
with varying levels of performance. Some were referred 
by community neuropsychologists in Northern 
California and others identified by researchers at Johns 
Hopkins University. To account for the functional range 
in the MCI subjects, experts identified 21 MCI subjects 
as being “High Functioning MCI” and 17 subjects
as “MCI”. “High functioning MCI” includes subjects 
who perform within the normal range on standard tests 
of cognitive function, but who present with complaints 
of perceived cognitive deficits. “MCI” includes subjects 
whose performance on standardized tests fall within the 
range of Mild Cognitive Impairment. Automated MCI 
Risk Score classification was developed with data from 
32 Normal Control subjects and the 17 subjects with 
MCI. Both MCI and High Functioning MCI groups 
were analyzed according to the MCI Risk Score.

Methods. Standardized versions of basic variable scores 
were combined to form an MCI Risk Score. This score 
is designed to specifically distinguish performance of 
normal subjects from the performance of subjects with 

Mild Cognitive Impairment. Basic variable scores were
standardized based on the Normal Control data set to 
have means set to zero and standard deviations set to 
one. For a minimal subset of Miro modules with 
non-equivalent versions, basic scores were standardized 
independently, per version. These included: 1. Picture 
Description, wherein each picture to be described 
produces a unique lexicon; Category Fluency, wherein 
each category to be explored produces an independent 
word list; and Letter Fluency, wherein each letter to 
initiate word-production varies in difficulty and 
produces a unique word-list length. Prior to combining 
variables into aggregate scores, each standardized 
variable score was quantile-normalized to mitigate 
undue influence of outliers or peculiar distributions of 
any individual scores. Missing values were imputed 
using low rank matrix completion1. If a subject 
participated in multiple assessments (as for test-retest 1
reliability), only initial (T1) assessment results were 
included in the discrimination analysis. The process for 
combining normalized variables to form an MCI risk 
score is described below: 

The risk score was developed using L1-, L2-regularized 
“elastic net” logistic regression2 which is a modified 
version of logistic regression. In this application of L1-, 
L2- elastic net regression, the combination of 
normalized input variables were optimized based on the 
log-odds estimates of each individual’s performance 
pattern correlating with a predefined MCI performance 
pattern.

The MCI performance pattern was defined by the MCI 
subject group mean and standard deviation per variable. 
The effect of the L1- penalty was to exclude input 
variables from the risk score if they were not 
particularly useful for inferring the odds of individuals 
being categorized as MCI. The effect of the L2- penalty 
was seen in situations where there are several highly
correlated variables that each predict the odds of being 
categorized as MCI. With an L2- penalty, rather than 
picking a single input from the set of correlated input 
scores, a weighted combination was used — possibly 
smoothing out noise or measurement error. When 
datasets were limited, rather than using a portion of the 
data to optimize the weights put on the two penalties, 
the relative weights put on the two penalties were set 
equal (alpha=0.5) and the overall strength of the 
penalties was set to 0.2 (lambda=0.2). Results describe
the maximum likelihood that the data was subject to a 
penalty on both a) the sum of the absolute values of the 
weights put on each of the input variables ( the L1- 
penalty) and b) on the sum of the squares of the weights 

(L2- penalty). For an individual, the weighted 
combination of input variables corresponding to the 
learned penalized logistic regression is treated as a new 
score — that individual’s risk score for being 
categorized as MCI. To evaluate these risk scores for 
the Normal and MCI subjects used to learn the model 
(the weights on the input variables to combine into the 
risk score), leave-one-out crossvalidation was used. 
Each of the Normal or MCI subjects in turn was left out 
of the analysis, the weights on the input variables for 
the risk score were reevaluated in the remaining 
subjects, and the resulting model was used to calculate 
the risk score for the left-out subject. MCI Risk Scores 
were calculated for all subjects.

Results. The high intra-class correlation (0.79) for the 
MCI Risk Score indicates that this is a reliable measure 
of individuals’ performances. The AUC of the MCI Risk 
Score to separate normal subjects from clinically 
impaired MCI subjects is (0.94). When High 
Functioning MCI and MCI subjects were combined into 
a single group, the AUC is (0.87). When all impaired 
study subjects were combined (including High 
Functioning MCI, Alzheimer’s Disease, Parkinson’s 
Disease, aphasia, and frontotemporal disorders) and 
compared to Normal Controls, the AUC for the MCI 
Risk Score to separate impaired subjects from Normal 
Controls was (0.92). 

1Jian-Feng Cai, Emmanuel J. Candès, and Zuowei Shen A Singular Value Thresholding Algorithm for Matrix Completion. SIAM J. Optim., 20(4), 1956–1982. (27 pages)
2Jerome Friedman, Trevor Hastie and Rob Tibshirani. (2008). Regularization Paths for Generalized Linear Models via Coordinate Descent. Journal of Statistical Software, 2Vol. 33(1), 1-22 Feb 2010.



The subjects with MCI were a heterogeneous group 
with varying levels of performance. Some were referred 
by community neuropsychologists in Northern 
California and others identified by researchers at Johns 
Hopkins University. To account for the functional range 
in the MCI subjects, experts identified 21 MCI subjects 
as being “High Functioning MCI” and 17 subjects
as “MCI”. “High functioning MCI” includes subjects 
who perform within the normal range on standard tests 
of cognitive function, but who present with complaints 
of perceived cognitive deficits. “MCI” includes subjects 
whose performance on standardized tests fall within the 
range of Mild Cognitive Impairment. Automated MCI 
Risk Score classification was developed with data from 
32 Normal Control subjects and the 17 subjects with 
MCI. Both MCI and High Functioning MCI groups 
were analyzed according to the MCI Risk Score.

Methods. Standardized versions of basic variable scores 
were combined to form an MCI Risk Score. This score 
is designed to specifically distinguish performance of 
normal subjects from the performance of subjects with 

Mild Cognitive Impairment. Basic variable scores were
standardized based on the Normal Control data set to 
have means set to zero and standard deviations set to 
one. For a minimal subset of Miro modules with 
non-equivalent versions, basic scores were standardized 
independently, per version. These included: 1. Picture 
Description, wherein each picture to be described 
produces a unique lexicon; Category Fluency, wherein 
each category to be explored produces an independent 
word list; and Letter Fluency, wherein each letter to 
initiate word-production varies in difficulty and 
produces a unique word-list length. Prior to combining 
variables into aggregate scores, each standardized 
variable score was quantile-normalized to mitigate 
undue influence of outliers or peculiar distributions of 
any individual scores. Missing values were imputed 
using low rank matrix completion1. If a subject 
participated in multiple assessments (as for test-retest 1
reliability), only initial (T1) assessment results were 
included in the discrimination analysis. The process for 
combining normalized variables to form an MCI risk 
score is described below: 

The risk score was developed using L1-, L2-regularized 
“elastic net” logistic regression2 which is a modified 
version of logistic regression. In this application of L1-, 
L2- elastic net regression, the combination of 
normalized input variables were optimized based on the 
log-odds estimates of each individual’s performance 
pattern correlating with a predefined MCI performance 
pattern.

The MCI performance pattern was defined by the MCI 
subject group mean and standard deviation per variable. 
The effect of the L1- penalty was to exclude input 
variables from the risk score if they were not 
particularly useful for inferring the odds of individuals 
being categorized as MCI. The effect of the L2- penalty 
was seen in situations where there are several highly
correlated variables that each predict the odds of being 
categorized as MCI. With an L2- penalty, rather than 
picking a single input from the set of correlated input 
scores, a weighted combination was used — possibly 
smoothing out noise or measurement error. When 
datasets were limited, rather than using a portion of the 
data to optimize the weights put on the two penalties, 
the relative weights put on the two penalties were set 
equal (alpha=0.5) and the overall strength of the 
penalties was set to 0.2 (lambda=0.2). Results describe
the maximum likelihood that the data was subject to a 
penalty on both a) the sum of the absolute values of the 
weights put on each of the input variables ( the L1- 
penalty) and b) on the sum of the squares of the weights 

(L2- penalty). For an individual, the weighted 
combination of input variables corresponding to the 
learned penalized logistic regression is treated as a new 
score — that individual’s risk score for being 
categorized as MCI. To evaluate these risk scores for 
the Normal and MCI subjects used to learn the model 
(the weights on the input variables to combine into the 
risk score), leave-one-out crossvalidation was used. 
Each of the Normal or MCI subjects in turn was left out 
of the analysis, the weights on the input variables for 
the risk score were reevaluated in the remaining 
subjects, and the resulting model was used to calculate 
the risk score for the left-out subject. MCI Risk Scores 
were calculated for all subjects.

Results. The high intra-class correlation (0.79) for the 
MCI Risk Score indicates that this is a reliable measure 
of individuals’ performances. The AUC of the MCI Risk 
Score to separate normal subjects from clinically 
impaired MCI subjects is (0.94). When High 
Functioning MCI and MCI subjects were combined into 
a single group, the AUC is (0.87). When all impaired 
study subjects were combined (including High 
Functioning MCI, Alzheimer’s Disease, Parkinson’s 
Disease, aphasia, and frontotemporal disorders) and 
compared to Normal Controls, the AUC for the MCI 
Risk Score to separate impaired subjects from Normal 
Controls was (0.92). 

Table 2. Discrimination between MCI, High Functioning MCI and Normal Controls

For the 32 Normal Control subjects, the cross-validated MCI risk scores had mean values of (1.49), 
with a standard deviation of (0.87). For the 17 MCI subjects the risk scores had a mean value of 
(-0.44) with a standard deviation of (0.92). For the 21 high functioning MCI subjects, The risk score 
had a mean value of (0.41) with a standard deviation of (0.77). For the combined group of MCI 
subjects, the risk score had a mean value of (0.03) with a standard deviation of (0.92). For a pool of 
67 impaired subjects, the risk score had a mean value of (0.52) with a standard deviation of (1.14).



The corresponding AUCs for separating the groups are strong, often over 0.9.

Discussion. Preliminary results indicate that the 
combination of precision data capture combined with 
machine-learning approaches shows notable 
improvement to sensitivity and specificity of MCI vs. 
Normal Controls as compared to traditional clinical and 
research practices. While the leave-one-out approach 
curtails potential over-fitting of the model, the 
collection of larger data sets will allow further 
exploration of alternative approaches, for example the 
use of training and test sets. It is expected that increased 
data set size will generally correspond to improved
performance.

THE DISCRIMINATION OF DISTINCT 
FUNCTIONAL DEFICITS

A preliminary analysis of the use of Miro scores to 
separate subjects with particular functional deficiencies 
was conducted using the 32 normal subjects, 5 subjects 
with frontal stroke or other frontal deficits, 12 subjects 
with Alzheimer’s Disease and characterized as having 
memory deficits, 7 subjects with primary progressive 
aphasia or other language deficits, and 6 subjects with 
Parkinson’s disease or other motor deficits. Non-normal 
subjects included in the analysis received gold-standard 
clinical diagnoses from specialty academic research 
centers.

Methods. Each subject was assessed with Miro. For 
subjects who participated in multiple assessments, only 
initial (T1) assessments were used in this analysis. 
Variable scores were calculated with available subject 
data; missing data was not imputed given the limited 
sample size per diagnostic group. Raw scores were 

standardized to mean values of 0 and standard 
deviations of 1 in the Normal Control subgroup. 
Standardization for each unique stimulus prompt for 
Picture Description, Category Fluency, and Letter 
Fluency were incorporated. For each standardized score 
and each subject group, the statistical significance of the 
separation of the group mean score from the normal 
mean score was assessed using a Mann-Whitney test. 
Miro variables were screened for their ability to 
separate each paired group of functional deficits 
including: motor-memory, motor-language, 
motor-executive, memory-language, memoryexecutive, 
and language executive. 

Subject numbers per functional domain are not yet large 
enough to effectively use machine learning paradigms 
to determine the best approach for group separation and 
characterization. Instead, for this exploratory analysis, 4 
variable relationships were identified by human experts
to characterize typical functional differences between 
groups of subjects with particular functional deficits: 

A: Relative performance (standardized score) on 
Category Fluency
B: Combined relative performances on Trails B (time) 
and Symbol Coding
C: Relative performance on Verbal Learning
D: Difference between relative performances on Verbal 
Fluency and Design Fluency

Results. Four key variable relationships separate 
functional domain pairs with the following p-values for 
Mann-Whitney tests.

Table 3. p-values for functional group pair-comparisons

Table 4. AUCs for functional group pair-comparisons

Many individual Miro variables separate the groups 
with specific deficits (Memory, Frontal, Language, 
Motor) from Normals or from each other. Of 155 basic 
Miro variables, the following are the counts of variables 
that separate a pair of groups of subjects with p-values 
from Mann-Whitney test of below 0.0001.

Frontal vs Memory: 35
Frontal vs Language: 16
Frontal vs Motor: 11
Memory vs Language: 34
Memory vs Motor: 12
Language vs Motor: 12



Discussion. Preliminary analysis on a small data set 
shows strong separation of subject groups by deficits 
across four functional domains: Memory, 
frontal-executive, language, motor. It is hypothesized 
that improved data capture methods combined with the 
extraction of features from rich data types, like voice, 
movement and timing, provided the improved precision 
and functional diversity that is needed to accurately 
characterize and separate groups. As the data set grows, 
it is expected that machine-learning models will 
perform equally well or better than human-driven 
models. The precise characterization of a broad range of 
functions is expected to better support accurate 
diagnosis and monitoring of patient status over time.

Construct validity

Subjects and normative data
Thirty two normal volunteers participated in the 
normative study. Normal volunteers were recruited from 
a local retirement community; they were without past or 
present psychiatric or neurological disorders or head 
injuries and were free of medications that might affect 
the central nervous system. Normal subjects ranged in 
age from 49 to 89. One-hundred and one total subjects 
have been assessed for the current study as of January 
2017. Patients were recruited from Johns Hopkins 
University School of Medicine and local neurology and 
neuropsychology practices.

TEST-RETEST RELIABILITY AND 
LEARNING EFFECTS

Miro’s reliability was investigated through a test-retest 
reliability study that assessed performance in normal 
controls at three time points over three months.

Subjects and methods. Miro's test-retest reliability was 
evaluated in 21 normal volunteers and 7 High Functioning 
MCI subjects who were assessed in their homes by a 
clinical neuropsychologist on 3 occasions. Assessments 
were separated on average by 22 days. The test-retest 
interval ranged from 2 to 54 days, with a median interval of 
16 days. 

Intra-class correlations were calculated for the MCI Risk 
Score with data from 3 time points (T1, T2, T3) in order to 
quantify test-retest reliability, or the ability to consistently 
identify performance levels for specific individuals. To 
assess learning effects, the changes in scores across test 
administrations for each subject (trends) were calculated. 
Permutation tests were used to identify mean trends and 
their significance. 

The calculation of test-retest reliability and learning effects 
included the standardization of raw scores. Raw scores 
were standardized by the distribution of scores in the 
normal subject population upon initial Miro assessment 
(T1). T1 observations for each score were standardized 
with a mean value of 0 and standard deviation of 1. 
Subsequent observations (T2, T3) were standardized using 
the initial (T1) reference distribution. Mean standardized 
scores in T2 or T3 are measured in standard deviation units 
relative to T1 scores. Slopes have units of standard 
deviations per assessment (SD/A). 

Results. The test-retest reliability intra-class correlation 
coefficient (ICC) for the MCI Risk Score was (0.79), 
with a 95% confidence interval of (0.65, 0.89). This 
shows the stability or reliability of measurements of 
individuals’ functional abilities.

Discussion. Correlation between individuals’ scores on 
each administration. The intra-class correlation (ICC) is 
the ratio of inter-individual variance to total variance of 
measurements across time points. A narrow range of 
functional ability as captured in this normal sample set 
demonstrate a low inter-individual variance relative to 
the variance in a mixed clinical population whose 
results include scores outside the normal range. Results 
show a significant ICC, even within this narrow range 
of normal performance. This not only suggests Miro’s 
ability to consistently quantify individual performance, 
but also Miro’s ability to distinguish performance 
signatures of individual normal subjects. 

Learning effects. Analysis of repeated Miro assessments 

in a cognitively normal population shows minimal learning 
effects or other trends over three sequential test 
administrations. Across Miro variables, the mean subject 
performance at time point 3 shifted less than 0.09 standard
deviations (SD) from initial performance.  

CONCURRENT VALIDITY

Miro’s construct validity was investigated through a 
concurrent validity study comparing Miro scores to 
standard neuropsychological tests in normal and impaired 
populations.

Subjects. Fifty-two subjects were tested on a battery of 
standard neuropsychological tests and analogous Miro 
modules. Analysis is based on 19 normal subjects and 33 
subjects with brain impairment.

Methods. Assessment. Eighty-eight percent of subjects 
were assessed in their homes by clinical 
neuropsychologists, 12% were assessed at Johns Hopkins
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University Medical Center. Fifty percent of subjects 
were assessed with traditional tests prior to Miro 
assessment; 50% were assessed with Miro prior to 
traditional assessment. Traditional tests were 
hand-scored by the administering neuropsychologist 
and entered into a spreadsheet. Miro performance data 
was automatically uploaded from the iPad to Miro’s 
HIPAA-compliant cloud-based server.

Missing data. Correlations for each variable were 
calculated with subjects whose results included both 
Miro and traditional scores. Subjects were excluded 
from the correlation of individual variables when 
missing either Miro or traditional scores (or both) for 
that variable.

Standardization of scores. Standardization of scores 
occurred via a two-step process: 1. Subtracting the mean 
from the normal subject reference set, 2. Rescaling centered 
scores by the standard deviation of reference set scores. The 
mean score of the normal reference set was set to 0 and the 
standard deviation was set to 1.

Results. Miro module scores demonstrate significant 
correlation with traditional scores (Table 3). Estimated 
Spearman correlations for most Miro and traditional scores 
are greater than 0.5 and are significantly different than zero 
with p-values of 0.05 or lower. Statistical results provide
preliminary evidence that Miro scores quantify brain 
function comparably to traditional, in-depth, 
clinician-administered neuropsychological assessment 
methods.

Discussion. As expected, concurrent validity between 
independent variables from Miro’s selfadministered, 
clinician-supervised tablet assessment and traditional 
clinician-administered pencil-paper based testing was 
moderate, ranging from (0.42) to (0.69). These results 
are similar to test-retest reliability for standard, in-depth 
neuropsychological test scores3. Relatively modest 
correlation is expected given traditional test challenges 
with inter- and intrarater reliability, blunt scores, and 
low levels of sensitivity and specificity for 
differentiating disorders. Statistically significant 
Spearman correlations between Miro scores and their 
traditional analogues suggest that Miro and traditional 
exams quantify equivalent functional abilities. Low 
p-values indicate a high degree of confidence in the 
correlations. This is notable given the study’s limited 
sample size, the large proportion of normals who 
demonstrate a narrow range of functional ability, and 
the large proportion of mildly impaired subjects with 
near-normal abilities.

It is important to note that the sample set of Normal 
Controls exhibits a narrow range of performance on 
Miro modules. The narrow range of scores from the 
normal controls dampens potential correlation with 
traditional scores, whereas the broader performance 
range of impaired subjects strengthens potential 

correlation. Also noteworthy is the fact that more than half 
of the impaired subjects volunteered to participate as 
Normal Controls but failed the screening test by a slim 
margin (1-2 points below the normal-group inclusion 
threshold of 26 on the MoCA4). Many of these mildly 
impaired subjects participated in the study not as Normal 
Controls, but as MCI subjects.

Conclusion. While traditional assessment methods have 
been useful in confirming moderate to severe impairment, 
they have struggled to characterize mild, clinically 
meaningful functional differences. Preliminary findings 
show promise for machine-driven methods like rich data
capture, digital signal processing, and machine-learning to 
precisely characterize brain function. Early results on a 
small sample size indicate that machine-driven approaches 
support the separation of overlapping groups of mildly 
impaired subjects from normal controls and from each other. 
Test-retest reliability results demonstrate the potential to 
track the signature performance of each individual over 
time. It is expected that with larger data sets collected over
time, these capabilities could be used to predict disease 
course, monitor therapeutic effects, support differential 
diagnosis, describe disease sub-types, and find phenotypic 
markers.

3Grant L. Iverson. Interpreting change on the WAIS-III/WMS-III in clinical samples. Archives of Clinical Neuropsychology. 2001; Snow WG. WAIS-R test-retest reliability 3 in a normal elderly sample. 
Journal of Clinical Experimental Neuropsychology. 1989
4Damian AM, The Montreal Cognitive Assessment and the mini-mental state examination as screening instruments for cognitive impairment: item analyses and threshold 4 scores. Dementia and Geriatric 
Cognitive Disorders. March 2011




